If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2+5X-71=0
a = 2; b = 5; c = -71;
Δ = b2-4ac
Δ = 52-4·2·(-71)
Δ = 593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{593}}{2*2}=\frac{-5-\sqrt{593}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{593}}{2*2}=\frac{-5+\sqrt{593}}{4} $
| 1/w-1-2/3w-3=1/3w-3 | | (y+3)^2+(y+5)^2=0 | | x(x+3)(x-3)-(x+2)(x^2-2x+4)=0 | | x(x+3)(x-3)-(x+2)(x^2-2x+40=0 | | 40=5+u/5 | | 5x+36=0 | | 2/45=p/100 | | 5x-20=20x-50 | | 8x+12=2x+14 | | 5x=6=2x=45 | | 2(7-2x=10 | | 18=2/7x | | 1/2f=8 | | 12+30b=42 | | -w/7=-60 | | -46=u/3 | | 8m+4=10 | | -3(x+2)=-8 | | 4+8m=10 | | y=15/7 | | Y=20+y | | 5=m+4/3 | | a-(-7)=-45 | | 6u-5=13 | | 14x+2=14x+2 | | 2(2b+1)=15 | | 14x+2=2x+14 | | 2(2b+1)=5(3) | | B=2x-2 | | 4(2x-5)-x=14 | | 49x+7=7x+49 | | —8x+3=—29 |